Guide to using the program
“The block multithreshold decoder with erasures”
The program allows for user to explore the effectiveness of the block multithreshold decoder in communication channel with erasures. It performs the modeling of the transmission system, consisting of data source, selforthogonal code encoder, modulator, channel, demodulator, multithreshold decoder and receiver of data. The data source generates a data stream consisting of 0 and 1 appearing with equal probability. This data is supplied to an encoder which performs encoding them using a block code semiorthogonal specified generating polynomial from a file encoder.txt. The result is a codeword which is transmitted over a communication channel with erasures, where each symbol with probability p is replaced by the sign of “erasure”, and with probability 1–p is transmitted without distortion. Taken from the channel, the message arrives at the input of the multithreshold decoder, which corrects erasure in the received data. The result of the decoding is compared with the transmitted data in the receiver data and calculated the number of remaining erased symbols.
The program requires three files:
1. erasureMTD.exe – the executable program file.
2. encoder.txt file with settings used by the encoder.
3. param.txt file with parameters of the experiment and the decoder.
After starting the program reads the raw data of files with parameters and performs in accordance with the simulation, which estimates the probability of erasure at the output of the multithreshold decoder for a given probability of erasure in the communication channel. Detailed statistics of the operation of the decoder is output to a file result.txt that is created in the current directory.
File settings param.txt:
The first three variables (P0_first, P0_last, P0_step) specify a range and a step change in the probability of erasure in the communication channel:
P0_first=0.43 //the initial value of the probability of erasure bits
P0_last=0.29 //the final value of the probability of erasure bits
P0_step=0.01; //step of changing the probabilities of erasure bits
In this case, will assess the probability of erasure at the output of the multithreshold decoder for each value of the probability of erasure in the channel in the interval from 0.29 to 0.49 with increments 0.01.
Following the volume parameter specifies the maximum number of transmitted bits during the experiment.
MinBlockErr parameter specifies the number of blocks to erase after the appearance of which at the current value of the probability of erasure in the communication channel can be used to terminate the simulation (this option allows for minimum time to provide the required accuracy of the obtained results).
Itert parameter specifies the number of iterations multithreshold decoding. This decoder is an iterative decoder of majority type, which is done several stages (iterations) of decoding the every received block. The demo-program have a limitation of the number of decoding: iterations must be at least 3 and not more than 10.
File settings encoder.txt:
nk=2 nr=2
i=1 v=1 2 6 82
i=2 v=1 2 13 141
i=1 v=2 2 0 134
i=2 v=2 2 9 207

The parameter nk specifies the number of information branches of the encoder (this demo-program have a limitation of no more than four information branch), the parameter nr defines the number of used branches of the encoder (this demo-program have a limitation of no more than four test branches). When encoding the original information sequence is stored in nk shift registers of the same length (the length of registers is equal to 2p+1, where p is the maximum degree of generated polynomials). Further, using the operation of summation modulo 2, we calculate the nr of check bits. Thereafter, the cyclic shift information and registers again calculated nr testing symbols. This process is repeated, until the information registers will return to their original state (2p+1 shift).
Next, you will set polynomials connecting the i-th information and the v-th test branch. For each pair of information–the validation branch (e.g. i=1 v=1) sets the number of test symbols of the i-th information branch participating in the formation of each symbol of v-th verification branch (code in the example uses two checks), then identifies specific positions used checks, starting from zero (e.g. i=1 v=1 2 6 82 means that when the null terminator of the first test branches will be used the 6th and the 82nd symbols of the first information branch).
When looking through over all pairs of information–a test branch for indication of positions of the first checks fixed the first testing branch and for her to move all the information of the branch, then fixed a second test branch for her through all of the information branch, etc.
i=1 v=1 2 6 82
i=2 v=1 2 13 141
i=1 v=2 2 0 134
i=2 v=2 2 9 207
In the demo program, the value of each of the checks should be less than 1000. If one of the positions of audits exceeds this value, the program will display the error message and immediately exits.

An example of the arrangement of the encoder block the encoder selforthogonal code with one information and one of the verification branches shown in the figure. It is seen that the encoder consists of shift register and adders modulo 2.

The use of this encoder in the file encoder.txt you need to set:
nk=1 nr=1
i=1 v=1 4 0 1 4 6
A sample diagram of a binary block encoder selforthogonal code with two information and two of the verification branches shown in the following figure.

The use of this encoder in the file encoder.txt you need to set:
nk=2 nr=2
i=1 v=1 2 0 1
i=2 v=1 2 0 4
i=1 v=2 2 0 6
i=2 v=2 2 0 15
In the output file result.txt displays information about the simulation parameters, the modulator, the encoder and the decoder used in the simulation and for each value of the probability of erasure in the communication channel displays information on the estimated probability of erasure at the output of the decoder and the number of erasures remaining after each iteration of decoding.
oleObject3.bin
3

15

4

5

6

0

1

2

7

8

9

10

11

12

u2u1

14

13

15

0

1

2

K

3

4

5

6

7

8

9

10

11

12

14

13

v1

v2

K

30

29

28

…

30

29

28

…

image1.emf
0 1 2 3 4 5 6 7 8 9 10 11 12

v

j

u

j

-addition on module2

K 1

2

oleObject1.bin
vj

K

1

uj

0

1

2

3

4

5

6

7

8

9

10

11

12

- addition on module 2

2

image2.emf
u

2

u

1

3 4 5 6 7 8 9 10 11 12 14 13

v

1

v

2

15 0 1 2

3 4 5 6 7 8 9 10 11 12 14 13 15 0 1 2

K

K

30 29 28 …

30 29 28 …

oleObject2.bin
3

15

4

5

6

0

1

2

7

8

9

10

11

12

u2u1

14

13

15

0

1

2

K

3

4

5

6

7

8

9

10

11

12

14

13

v1

v2

K

30

29

28

…

30

29

28

…

